Comparative Study of People Detection in Surveillance Scenes
نویسندگان
چکیده
We address the problem of determining if a given image region contains people or not, when environmental conditions such as viewpoint, illumination and distance of people from the camera are changing. We develop three generic approaches to discriminate between visual classes: ridge-based structural models, ridge-normalized gradient histograms, and linear auto-associative memories. We then compare the performance of these approaches on the problem of people detection for 26 video sequences taken from the CAVIAR database.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملRobust Recognition of Specific Human Behaviors in Crowded Surveillance Video Sequences
We describe a method that can detect specific human behaviors even in crowded surveillance video scenes. Our developed system recognizes specific behaviors based on the trajectories created by detecting and tracking people in a video. It detects people using an HOG descriptor and SVM classifier, and it tracks the regions by calculating the two-dimensional color histograms. Our system identifies...
متن کاملEstimating the Number of People in Crowded Scenes by MID Based Foreground Segmentation and Head-shoulder Detection
This paper proposes a novel method to address the problem of estimating the number of people in surveillance scenes with people gathering and waiting. The proposed method combines a MID (Mosaic Image Difference) based foreground segmentation algorithm and a HOG (Histograms of Oriented Gradients) based head-shoulder detection algorithm to provide an accurate estimation of people counts in the ob...
متن کاملA Proposal for Local and Global Human Activities Identification
There are a number of solutions to automate the monotonous task of looking at a monitor to find suspicious behaviors in video surveillance scenarios. Detecting strange objects and intruders, or tracking people and objects, is essential for surveillance and safety in crowded environments. The present work deals with the idea of jointly modeling simple and complex behaviors to report local and gl...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006